Complete Guide to Python Data Structures & Algorithms Course
Development100% OFF

Complete Guide to Python Data Structures & Algorithms Course

Udemy Instructor
0(0 students)
Self-paced
All Levels

About this course

Unlock the power of Python Data Structures and Algorithms and take your programming skills to the next level. This course is designed for beginners, intermediate programmers, and anyone looking to master efficient coding techniques that are essential for software development, problem-solving, and technical interviews.You will begin by understanding the core concepts of Python Data Structures and Algorithms, including lists, stacks, queues, linked lists, trees, and graphs. Each concept is explained in a simple, practical way, allowing you to see how it works in real-world applications and why it matters for writing efficient code.The course then dives deeper into algorithms, covering essential topics such as searching, sorting, recursion, and dynamic programming.

You’ll learn how to analyze algorithm performance, optimize code, and solve problems faster using Python’s powerful features.Practical hands-on coding is a key focus of this course. You’ll work on real examples and exercises that reinforce your understanding of Python Data Structures and Algorithms. By applying what you learn immediately, you’ll gain the confidence to tackle more complex coding challenges.Throughout the course, you will gain skills such as:Implementing Python lists, stacks, queues, linked lists, and treesWriting efficient search and sorting algorithmsSolving problems using recursion and dynamic programmingAnalyzing algorithm complexity and performancePreparing for coding interviews and competitive programmingBy the end of this course, you will be able to write clean, efficient, and scalable Python code using the right data structures and algorithms.

You’ll understand how to choose the appropriate tools for different programming challenges, giving you a strong foundation for advanced Python development or software engineering roles.This course is perfect for:Beginners looking to strengthen their Python coding skillsProgrammers preparing for coding interviewsStudents and professionals aiming to improve problem-solving efficiencyAnyone interested in mastering Python Data Structures and AlgorithmsEnroll now to gain mastery of Python Data Structures and Algorithms through clear explanations and practical examples that will prepare you for real-world programming challenges and technical interviews.

Skills you'll gain

Programming LanguagesEnglish

Available Coupons

Course Information

Level: All Levels

Suitable for learners at this level

Duration: Self-paced

Total course content

Instructor: Udemy Instructor

Expert course creator

This course includes:

  • 📹Video lectures
  • 📄Downloadable resources
  • 📱Mobile & desktop access
  • 🎓Certificate of completion
  • ♾️Lifetime access
$0$96.99

Save $96.99 today!

Enroll Now - Free

Redirects to Udemy • Limited free enrollments

You May Also Like

Explore more courses similar to this one

Numpy, Scipy, Matplotlib, Pandas, Ufunc : Machine Learning
Development
1.0K left

Numpy, Scipy, Matplotlib, Pandas, Ufunc : Machine Learning

Udemy Instructor

This course is a complete guide to NumPy, SciPy, Pandas, Matplotlib, Random, Ufunc, and Machine Learning, designed for anyone who wants to build a strong foundation in data science using Python. Whether you are a beginner or an aspiring data analyst or machine learning engineer, this course will help you understand how these essential libraries work together in real-world applications.You will start by learning NumPy, focusing on arrays, indexing, slicing, mathematical operations, Random, and Ufunc functions. These core concepts are the backbone of numerical computing in Python and are essential for efficient data processing and machine learning workflows.Next, you will explore Pandas for data manipulation and analysis. You will learn how to work with Series and DataFrames, clean and transform data, handle missing values, and perform data analysis tasks efficiently. These skills are critical for preparing data before applying Machine Learning models.The course also covers Matplotlib for data visualization and SciPy for scientific and mathematical computing. You will learn how to create meaningful charts and graphs, perform statistical analysis, and apply scientific functions that support data analysis and machine learning development.Throughout the course, you will gain hands-on experience by practicing key skills such as:Working with NumPy arrays, Random functions, and Ufunc operationsCleaning, analyzing, and transforming data using PandasVisualizing data with Matplotlib for better insightsApplying SciPy tools for statistics and optimizationUnderstanding how these libraries support Machine Learning workflowsBy the end of this course, you will understand how to combine NumPy, SciPy, Pandas, Matplotlib, Random, and Ufunc to build efficient data pipelines and prepare data for Machine Learning projects. You will be able to analyze datasets, visualize patterns, and confidently work with Python’s most powerful data science libraries.Enroll now and start your journey into Machine Learning by mastering NumPy, SciPy, Pandas, Matplotlib, Random, and Ufunc through practical examples and hands-on learning.

0.00Self-paced
FREE$91.99
Enroll
HTML & CSS Made Easy: Web Design & Front-End Web Development
Development
1.0K left

HTML & CSS Made Easy: Web Design & Front-End Web Development

Udemy Instructor

This course is a complete guide to HTML and CSS for anyone who wants to learn web design and front-end web development from the ground up. Whether you are a beginner with no coding experience or someone looking to strengthen your fundamentals, this course will help you understand how modern websites are built and styled using industry-standard practices.You will start by learning the core structure of web pages with HTML and then move into styling, layout, and design using CSS. Each concept is explained in a simple, practical way so you can immediately apply what you learn. By the end of the course, you will feel confident creating clean, responsive, and visually appealing websites using HTML and CSS.This course focuses heavily on hands-on learning and real-world examples. Instead of memorizing theory, you will build actual web pages that reinforce your understanding of web design and front-end web development. You’ll learn how to structure content properly, style it professionally, and make layouts that adapt to different screen sizes.Throughout the course, you will learn essential skills including:Writing clean and semantic HTMLStyling websites with modern CSSCreating responsive layouts using Flexbox and CSS GridUnderstanding colors, typography, and spacing for better web designBuilding multi-page websites from scratchBy completing this course, you will gain practical experience that you can immediately use for personal projects, freelance work, or as a foundation for more advanced front-end web development technologies. You’ll understand how HTML and CSS work together to create professional websites and how to follow best practices used by developers in the industry.This course is designed for:Beginners with no prior coding experienceAspiring web designers and front-end developersStudents looking to build a strong HTML and CSS foundationAnyone interested in creating their own websitesIf you want to learn HTML and CSS, improve your web design skills, and start your journey into front-end web development, this course is the perfect place to begin. Enroll now and start building real, modern websites step by step with confidence.

0.00Self-paced
FREE$90.99
Enroll
Análisis de Datos con IA y Python en 10 Días. De 0 a Reporte
Development
98 left

Análisis de Datos con IA y Python en 10 Días. De 0 a Reporte

Udemy Instructor

Análisis de Datos con IA y Python en 10 Días. De 0 a Reporte es un curso 100 % práctico que te lleva, paso a paso, desde los fundamentos hasta la entrega de informes profesionales en Excel y PDF. Aprenderás a construir un flujo de trabajo completo de analítica: recolección, limpieza, exploración, visualización y reporte, utilizando Python y las librerías clave de la industria, con la IA como asistente para acelerar tu productividad.Comenzamos con una introducción clara al análisis de datos y al flujo de trabajo profesional. Luego dominamos las bibliotecas esenciales: NumPy para cómputo numérico, Pandas para manipulación tabular, y Matplotlib y Seaborn para visualización. Practicarás la extracción de datos desde múltiples fuentes (archivos comunes, Excel, JSON y una API) y aplicarás técnicas rigurosas de calidad de datos: detección y tratamiento de nulos, duplicados, valores incorrectos y outliers, así como normalización, creación de columnas derivadas, agrupaciones y reestructuración.Entrenarás un pensamiento analítico sólido con estadística descriptiva (tendencia central, dispersión, percentiles) y desarrollarás visualizaciones efectivas para comunicar hallazgos. Además, dedicarás un bloque al análisis temporal: manejo de fechas, resampling y gráficos de series. Cerramos integrando todo en reportes listos para negocio: hojas de Excel automatizadas y documentos PDF generados a partir de tus resultados.Para que avances con confianza, el curso incluye cuestionarios breves y seis asignaciones prácticas distribuidas a lo largo del programa, más un proyecto integrador con datos reales. La IA se incorpora de forma transversal: la emplearemos para crear borradores de código, listas de verificación de calidad, explicación de errores y plantillas de reportes, siempre con criterio y buenas prácticas.Este curso es para principiantes y para quienes quieran formalizar su proceso analítico. Solo necesitas curiosidad, ganas de practicar y un entorno básico de Python con Jupyter o Colab. Al finalizar, contarás con un portafolio mínimo: un informe completo y reproducible que podrás presentar en tu trabajo o incluir en tu CV.

4.8294Self-paced
FREE$112.99
Enroll